Laser-capture microdissection, a tool for the global analysis of gene expression in specific plant cell types: identification of genes expressed differentially in epidermal cells or vascular tissues of maize.

نویسندگان

  • Mikio Nakazono
  • Fang Qiu
  • Lisa A Borsuk
  • Patrick S Schnable
چکیده

Laser-capture microdissection (LCM) allows for the one-step procurement of large homogeneous populations of cells from tissue sections. In mammals, LCM has been used to conduct cDNA microarray and proteomics studies on specific cell types. However, LCM has not been applied to plant cells, most likely because plant cell walls make it difficult to separate target cells from surrounding cells and because ice crystals can form in the air spaces between cells when preparing frozen sections. By fixing tissues, using a cryoprotectant before freezing, and using an adhesive-coated slide system, it was possible to capture large numbers (>10,000) of epidermal cells and vascular tissues (vascular bundles and bundle sheath cells) from ethanol:acetic acid-fixed coleoptiles of maize. RNA extracted from these cells was amplified with T7 RNA polymerase and used to hybridize a microarray containing approximately 8800 maize cDNAs. Approximately 250 of these were expressed preferentially in epidermal cells or vascular tissues. These results demonstrate that the combination of LCM and microarrays makes it feasible to conduct high-resolution global gene expression analyses of plants. This approach has the potential to enhance our understanding of diverse plant cell type-specific biological processes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gene Expression Profile Analysis during Mouse Tooth Development

Introduction: Complex molecular pathways involve in development of different tissues such as teeth. Differential gene expression patterns during teeth development generates different tooth types. Teeth development results from interactions between oral epithelium and underlying ectomesenchyme cells with neural crest origin. Teeth development are regulated by different signaling networks. In thi...

متن کامل

Tissue-specific transcriptome profiling of the citrus fruit epidermis and subepidermis using laser capture microdissection

Most studies of the biochemical and regulatory pathways that are associated with, and control, fruit expansion and ripening are based on homogenized bulk tissues, and do not take into consideration the multiplicity of different cell types from which the analytes, be they transcripts, proteins or metabolites, are extracted. Consequently, potentially valuable spatial information is lost and the l...

متن کامل

Microarray Detection Call Methodology as a Means to Identify and Compare Transcripts Expressed within Syncytial Cells from Soybean (Glycine max) Roots Undergoing Resistant and Susceptible Reactions to the Soybean Cyst Nematode (Heterodera glycines)

Background. A comparative microarray investigation was done using detection call methodology (DCM) and differential expression analyses. The goal was to identify genes found in specific cell populations that were eliminated by differential expression analysis due to the nature of differential expression methods. Laser capture microdissection (LCM) was used to isolate nearly homogeneous populati...

متن کامل

Combined Use of Laser Capture Microdissection and cDNA Microarray Analysis Identifies Locally Expressed Disease-Related Genes in Focal Regions of Psoriasis Vulgaris Skin Lesions

Psoriasis vulgaris is a complex disease characterized by alterations in growth and differentiation of epidermal keratinocytes, as well as a marked increase in leukocyte populations. Lesions are known to contain alterations in messenger RNAs encoding more than 1,000 products, but only a very small number of these transcripts has been localized to specific cell types or skin regions. In this stud...

متن کامل

Cell type-specific gene expression profiling in plants by using a combination of laser microdissection and high-throughput technologies.

Laser microdissection (LM) allows for the isolation of specific cells of interest from heterogeneous tissues under direct microscopic visualization with the assistance of a laser beam. By permitting global analyses of gene expression and metabolites in the selected cells, it is a powerful tool for understanding the biological processes in individual cell types during development or in response ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Plant cell

دوره 15 3  شماره 

صفحات  -

تاریخ انتشار 2003